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Abstract

CFSE analysis of a proliferating cell population is a popular tool for the study of cell division and division-
linked changes in cell behavior. Recently [13, 45, 47], a partial differential equation (PDE) model to describe
lymphocyte dynamics in a CFSE proliferation assay was proposed. We present a significant revision of this
model which improves the physiological understanding of several parameters. Namely, the parameter γ used
previously as a heuristic explanation for the dilution of CFSE dye by cell division is replaced with a more
physical component, cellular autofluorescence. The rate at which label decays is also quantified using a
Gompertz decay process. We then demonstrate a revised method of fitting the model to the commonly used
histogram representation of the data. It is shown that these improvements result in a model with a strong
physiological basis which is fully capable of replicating the behavior observed in the data.

Key words: Cell proliferation, cell division number, CFSE, label structured population dynamics, partial
differential equations, inverse problems.
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1 Introduction

The quantitative analysis of cell division is an important problem at the intersection of biology and mathemat-
ics. Of the myriad applications and active areas of research, meaningful quantification of lymphocyte dynamics
associated with clonal expansion during an immunoassay constitutes a significant step toward understanding the
complex underlying processes of the biological system. Understanding cell proliferation is important in numer-
ous applications, from cancer and infectious disease diagnosis and treatment to immunosuppression therapies for
transplant patients. These applications depend upon the accurate characterization of the the rates at which cells
divide, differentiate, and die and, of equal importance, how changing intra- and extracellular conditions affect
these rates. Most commonly, the proliferative characteristics of a cell population are measured in terms of the
number of cells having undergone a specified number of divisions, as well as any division-linked changes which are
observed. Thus the problem is two-fold. First, there is a need for an experimental procedure which can quickly
and accurately provide division-related information in a population of dividing cells. Second, there is a need for
mathematical models which can describe the data obtained from such a procedure.

Unlike many other cell types, the inherent mobility in vivo and nonadherence in vitro of lymphocytes makes
the accurate determination of lineage very challenging [49] (although new techniques have been developed for
this purpose [35]). In the absence of such data, one can look instead at the total number of divisions a cell has
undergone since activation and how cells in different generations differ in phenotype (regardless of exact lineage).
In the past two decades, a number of different techniques have been used for the study of cell growth and division
[54, 66]. Early techniques, such as tritiated thymidine or bromodeoxyuridine (BrdU) uptake, while providing
information regarding the fraction of dividing cells, are dependent upon cellular activation and do not provide
information regarding how many divisions cells have undergone [50]. Lipophilic dyes which are incorporated into
cellular membranes, such as PHK26, have been used successfully for the study of cell division history, although the
uneven partitioning of the dye during mitosis can result in subsequent generations which are hard to distinguish
[54, 66].

Since it was first described in 1994 [50], serial dilution of the fluorescent dye carboxyfluorescein succinimidyl
ester (CFSE) has become the de facto method for the determination of such cellular division histories. CFSE
is introduced into a culture of cells as carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) which freely
diffuses across the cell membrane and inside the cells. The acetate groups are then removed by intracellular
esterases resulting in highly fluorescent CFSE which is less membrane permeant [54, 56]. CFSE is nonradioactive
and stably incorporated (so that measurable concentrations of CFSE remain within a viable cell for several weeks
in vivo); it provides quick, bright, and approximately uniform labeling of all cells in a population (regardless
of cell type or activation) [50, 66]. With a peak absorption at 491nm and a peak emission at 517nm, CFSE
is compatible with standard fluorescein cytometry setups [54, 56]. Using a flow cytometer, the fluorescence
intensity (a surrogate for CFSE content) of individual cells can be measured. Because the CFSE content of a
cell is divided approximately in half each time the cell divides, the number of divisions a cell has undergone can
then be determined by comparing the measured amount of CFSE to the original CFSE content of an undivided
cell [49, 50, 54, 56]. When individual cell fluorescent intensity measurements are binned into a histogram, each
generation of cells appears as a “peak” in the histogram data.

Numerous protocols for the application of CFSE-based proliferation assays are available, and these protocols
can be tailored to the specific goals of the experimenter [49, 50, 56, 68]. In particular, the compatibility of CFSE
with other dyes renders possible the simultaneous measurement of division history and many other quantities,
such as surface marker expression, cytokine content, and gene expression [49, 50, 66]. It is also possible to quantify
the effects of extracellular conditions such as stimulation strength and duration on proliferative behavior [24, 30].
Certainly, a complete mathematical description of a lymphocyte response must eventually be able to account for
such dynamic intra- and extracellular conditions. In this report, we postpone these additional complexities and
focus on simplified linear models for cell division and death. Even in this simplified framework, we find that the
resulting model has profound implications for the interpretation of cytometry data with a CFSE-based assay.

Because the flow cytometer provides measurements of individual cells within a sample, it is possible to obtain
basic information regarding the proliferative capacity of a sample of cells simply by computing the proportion of
dividing cells in a population. However, such descriptive and semi-quantitative methods are generally restricted
to populations which divide synchronously [66, 68]. A more quantitative analysis is possible if the peaks in
the histogram data (see Figure 1) are fitted with gaussian or log-normal curves to determine the numbers of
cells in each generation [49, 56]. While these basic frameworks provide an efficient measurement of the gross
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behavior of a proliferating culture, a more complete analysis (as well as comparisons among different cultures and
extracellular conditions) requires a more extensive mathematical framework to establish a quantitative measure
of the proliferation dynamics of the population.

Detailed mathematical analysis for asynchronously proliferating populations of cells began in earnest with
the work of Gett and Hodgkin [30]. By fitting CFSE histogram data with a series of log-normal curves, they
computed cell numbers for each generation over the course of several days and tracked how these numbers changed
over time. It was shown that cell numbers as a function of generation were well described by a gaussian curve,
following the hypothesis that the primary source of asynchrony within the population was a normally distributed
time-to-first-division. The authors go on to compute parameters such as mean division rate and mean time to
first division. A revision of this model [24] incorporates cell death in the undivided population and the percentage
of cells stimulated to divide. Because these models establish parameters which are readily identifiable from data
sets, changes in parameters resulting from changing experimental conditions have been used to describe in exact
terms how changing stimulatory and costimulatory conditions directly affect proliferative capacity [24, 30].

Other models to describe cell population dynamics have focused, to varying degrees, on mathematical for-
malisms of cell cycle dynamics. Several authors have used linear compartmental ordinary differential equations
(ODEs) [57, 65] to predict the number of cells in each generation as a function of time. More commonly, the
Smith-Martin [61] model of the cell cycle is used as the basis for a mathematization of cellular dynamics. In the
Smith-Martin model, the cell cycle is divided into a stochastic A state and a deterministic B state (corresponding
approximately to the G1 and S-G2-M phases of the cell cycle, respectively). In a differential equations frame-
work, each generation of cells has compartments A and B; cells exit the A compartment with a known rate and
remain in the B compartment for a fixed amount of time. This results in a system of delay differential equations
[22, 23, 29, 53]. It has been shown that the early models of Hodgkin et al., [24, 30] can be described in terms
of differential equations models [22, 43]. Several reports comparing autonomous and delay differential equations
models have concluded that the delay term is vital to the accurate modeling of CFSE proliferation assay data
because it prevents “rapid division cascades” by establishing a minimum cell cycle clock [22, 23, 29]. Alternatively,
Asquith et al., [2] show that an autonomous differential equation model with a sufficiently small rate of division
can accurately mimic the behavior of a delay system. Thus it seems clear that the interpretation of estimated
parameters must be carefully done in the context of the particular model being used [23]. More recently, a delay
differential equation model has been applied to cellular differentiation as well [59].

There are alternatives to differential equation models of cell-cycle based cell proliferation dynamics. The cyton
model, initially proposed by Hawkins et al., [33], assumes that the cellular controls of growth/division and death
are independent of one another. A particular cell in a given generation is assumed to have a fixed time-to-divide
and time-to-die, both chosen from fixed probability distributions. Whichever parameter is smaller determines the
fate of the cell in that generation; with each division, these two parameters are reset. Thus the behavior of the
entire population is described by the probability distributions from which these two parameters are drawn. This
has been shown to outperform the early ODE-compatible models [24, 30] and software implementing the method
is freely available [34]. A recent analysis has shown that the cyton model is consistent with a Smith-Martin
delay differential equation model under certain assumptions [41]. A generalization of the cyton model [25] has
been formulated to account for recently observed correlations between the proliferative behavior of sibling and/or
“cousin” cells.

Another approach to the cell-cycle based modeling of a proliferating population is the use of a stochastic
Bellman-Harris type branching process [37, 38, 62, 69]. Branching process models are similar to the cyton model
in that the fate of each cell is stochastic with fixed probability distributions for division and death. Hyrien and
Zand [37] find that branching models form a superset of Smith-Martin based models, and analysis by Subramanian
et al., [62] find it to be consistent with the cyton model.

Each of the models discussed thus far have been effectively used to provide various measures of the proliferative
capacity of a population of cells. In general, these models are based upon estimation from the cell numbers
computed by fitting CFSE histogram data with normal or log normal curves. Such approaches are straightforward
and easy to implement, and the resulting cell numbers provide an accurate description of the static distribution
of cells in the population. However, the imposition of particular shapes for the generational structure of CFSE
histogram data can introduce biased insight into the generation structure of the cells, and hence into the resulting
division and death rates. Alternatively, we propose that there is information to be learned not only from modeling
the total numbers of cells, but also from the direct modeling of the complete experimental process. This is a
more fundamental level of analysis of the kinetics of cell turnover which we believe to provide a more accurate
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assessment of the biological processes occurring in the population. Given such a goal, the development of CFSE
and flow cytometry proliferation assays makes structured population models a natural framework in which to
work. Significant literature exists on the subject of structured population models, going back at least as far
as the Sinko-Streifer [60] model for general populations or the Bell-Anderson [17] model for volume-structured
cell populations. More recently, “physiologically-structured” population models [52] have been developed for cell
populations structured by age [1, 16, 26], cyclin content [16], and size [27, 55] as well as DNA-content [15].

The measurement of CFSE fluorescence intensity (FI) by a flow cytometer makes measured fluorescence
intensity a natural structure variable for a structured population model. While not a physiological variable, the
notion that such a structure might be used to accurately model cytometry data by accounting for the natural
dilution of label was proposed at least as early as the year 2000 for BrdU-based assays [18]. To our knowledge,
Luzyanina, et al., [47], proposed the first model to explicitly employ fluorescence intensity as a structure variable
in a partial differential equation (PDE) framework. There it was shown that such a model can be effectively
used for the tracking of a proliferating lymphocyte population stained with CFSE, and that such a model is as
effective as compartmental ODE models for estimating the numbers of cells having undergone a specified number
of divisions. The key idea behind the use of FI as a structure variable is that, because CFSE FI decreases upon
division, fluorescence intensity can be used as a surrogate for division number. More recent work [6, 13, 45] has
consistently demonstrated that this PDE framework can accurately model the observed histogram data from a
CFSE-based proliferation assay. We believe that the primary benefit of using such a model lies in its ability
to treat the measured FI data directly, thus accounting for the intracellular dynamics of label dilution while
simultaneously estimating proliferation and death dynamics at the population level. Moreover, this method
relies less on distinct peak separations in the CFSE histogram data, a potential advantage when working with
heterogeneous cell populations.

While these models are indeed effective, the parameter estimates which resulted from fitting these models
to an available data set seemed to suggest that label was being created during the process of cell division, a
known impossibility [13]. In this document, we revisit the work presented in [13] and [47] primarily focusing on
two key problems addressed there but not resolved. First, we address the issue with the apparent creation of
label during cell division. It is shown that this apparent physiological impossibility is actually readily explained
and removed from the models by the inclusion of cellular autofluorescence. Second, we investigate the functional
form for the rate at which label naturally decays. By examining data from cells which were stained with CFSE
but not stimulated to divide, we find that a minor modification of the exponential decay first proposed in [47]
can provide a superior fit to the data. These two revisions (autofluorescence and biphasic label decay) provide
important insights into the mathematical analysis of turnover kinetics for cells stained with CFSE and measured
via flow cytometry. Their accurate modeling is vital to the meaningful estimation of population proliferation
and death rates in a manner which is unbiased and mechanistically sound. Significantly, this new model is still
sufficiently general to apply to a wide range of cell types and stimulation conditions and as such, might be used in
a diagnostic setting [28] (e.g., to distinguish between healthy and diseased or abnormal cells based upon estimated
proliferation rates).

2 CFSE Data Set

For the analysis here we use the same data set as in [13, 47]. This data set is the result of an in vitro proliferation
assay with human blood mononuclear cells (PBMCs) taken from a healthy blood donor. Briefly, approximately
5×106 to 5×107 were stained with 5µM CFDA-SE and stimulated to divide with 2.5 µg/mL phytohaemagglutinin
(PHA). The cells are placed in well plates at a density of 1× 106 cells per milliliter of RPMI-1640/10% fetal calf
serum (FCS) nutrient medium. Every 24 hours, cells from a single well are harvested and transferred to Trucount
tubes containing 51466 beads. These cells are then stained with fluorescently labeled anti-CD4 antibodies and
analyzed via flow cytometry. More detailed information on the experimental protocol used for this particular data
set can be found in [13, 47]. More information regarding the protocol in general can be found in [49, 50, 56, 66, 68].

At each sample time, a fraction of the population of cells placed in the Trucount tube and stained with
fluorescently labeled antibodies are counted by the cell sorter. This subpopulation contains all cell types present
in a PBMC culture (CD4+ and CD8+ T cells, B cells, monocytes, etc.), however only CD4+ T cells are considered
for mathematical analysis after gating them based on size, granularity and CD4+ expression. Because the entire
contents of the tube are not collected, the cell counts obtained from the cytometer are scaled upward by the ratio
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Figure 1: Original histogram data from [13, 47].

of known beads in the tube to the number of beads actually counted. We remark that, while this report focuses
exclusively on human CD4+ lymphocytes cultured in vitro, CFSE-based assays have been used successfully in
a wide variety of applications, including other T lymphocytes, B lymphocytes, NK cells, bacteria, fibroblasts,
hematopoietic stem cells, and smooth muscle cells [49, 54, 56].

Qualitatively, the flow cytometer returns a measure of the fluorescence intensity of a given cell, owing pri-
marily to the presence of CFSE within the cell. In order to obtain this measurement, the flow cytometer uses
hydrodynamic focusing to push cells one at a time through a beam of laser light. This light is absorbed and then
emitted again by the electrons in CFSE. This emitted light is filtered and then quantified by a photometer. While
the measurement process itself is complex, one should note that it is possible to measure thousands of individual
cells in a matter of seconds (so that it is reasonable to assume that a sample does not undergo any changes during
the measurement process). It is known that measured CFSE FI has a linear relationship with the concentration
of CFSE used in the staining process [49, Fig. 3] and is expected to correlate with the mass of CFSE within
a cell. Because CFSE FI divides approximately in half with each subsequent division (at least for the first few
generations; see Section 3) it is most convenient to use a logarithmic scale for CFSE FI.

The most common representation for CFSE FI data is a series of histograms. (While it is possible, in general,
to choose the bins for the histograms as one wishes, we remark that the current data set was already reported
as histogram data when we began efforts on it.) The current data set is shown in Figure 1. It is this histogram
data for which we seek a mathematical model. Each peak in the histogram data consists of cells which have
undergone the same number of divisions. Over time, all cells (even in the absence of division) slowly drift to the
left, reflecting a loss of label. An effective mathematical model must adequately describe both the emergence of
these distinct peaks as well as the slow decay of the label.

While the results in [13] were generated by fitting to the data at all five points in time (t = 24, 48, 72, 96,
and 120 hours), the current study will not make use of the data at t = 72 hours. Because CFSE is added to
the cell culture at the beginning of the experiment but not afterward, the total mass of CFSE in culture cannot
increase over the course of the experiment. This mass can decrease as a result of cell death and the natural
decay/catabolism of CFSE within a cell. (While the separate measurements in time are obtained from distinct
populations of cells in separate wells, the assumption that each well contains a sufficiently similar population is
standard.) Because fluorescence intensity is approximately proportional to the mass of CFSE within a cell, the
sum of all cells in a population, weighted by measured FI, provides an indication of the mass of CFSE within
the measured population. We have found that this ‘total label content’ (the sum of all cells in the histogram,
weighted by the measured FI) is greater at t = 72 hours than at the previous time point (see Figure 2), indicating
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zn(t, z)dz over time for the data from [13]. The increase at t = 72 hours is a
physiological impossibility.

a net increase in the mass of CFSE between t = 48 hours and t = 72 hours, a physical impossibility. The causes
of this increase are not currently known. It is possible that this unusual result is explained by naturally occurring
fluctuations in the number of beads counted by the cytometer, or possibly by the presence of additional cells
types (e.g., monocytes) in the data. This unusual feature is present (at various measurement times) in several
additional data sets which have been collected. As such, this feature will need to be addressed in the future by a
more accurate observation model. At any rate, we assume for the current report that this anomaly is the result
of measurement or scaling error or some unknown and unmodeled biological event; hence the t = 72 hours data
point will not be included in the present investigation. The new mathematical model proposed in this report,
as well as the mathematical model from [13], have both been calibrated with and without the data point at
t = 72 hours. The results (unpublished) confirm our suspicion as both models (which are derived from CFSE
mass-conservation principles) are incapable of accounting for the erroneously large quantity of CFSE observed at
t = 72 hours.

3 Mathematical Model

We begin this section by first recalling [13, 47] the previous PDE models proposed to describe the data. Let n(t, z)
be the label-structured population density indicating the density of cells at time t (hours) and log label intensity
z (log units of intensity, log UI). In the analysis of [13], it was shown that the most effective mathematical model
had the form

∂n(t, z)

∂t
+

∂[cn(t, z)]

∂z
= −(α(t, z + ct) + β(z + ct))n(t, z) (1)

+ χ[zmin,zmax−log γ]2γα(t, z + ct+ log γ)n(t, z + log γ),

where α(t, s) is the rate of cell proliferation (hr−1), β(s) is the rate of cell death (hr−1), c is the rate at which
label is lost (log UI hr−1), and γ is the ratio of CFSE FI of a mother cell to that of a daughter cell. Thus
the second term on the left represents velocity of decay of the florescence label while the last term on the right
represents rate of production of new cells due to cell division. A complete derivation and detailed explanations
are given in [6, 13].
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3.1 Physiological Interpretation of γ

It was shown in [13] that the model (1) is quite capable of providing an accurate fit to the data set at hand.
However, the parameter γ was used to represent an unknown process responsible for determining the CFSE FI
of two daughter cells given the CFSE FI of a mother cell. It was not known at the time what processes might be
represented by γ or how that parameter should be interpreted (see also [47] where γ was first introduced). We
would like to make this model more physically relevant by explaining the mechanism underlying the parameter
γ.

Mathematically, the parameter γ determines the peak-to-peak separation between subsequent generations of
cells (i.e., each generation has a CFSE FI approximately log10 γ less than the previous generation in the log FI
coordinate z). Given the definition of γ as the ratio of CFSE FI of a mother cell to that of a daughter cell, it is
expected that γ ≥ 2, with γ > 2 if label is lost during the process of cell division. However, the best fit parameter
from [13] was γ∗ = 1.5169, implying the creation of label at division. Similar results were also obtained in [47].
Indeed, forward simulations of the above model demonstrate that γ = 2 is significantly too large to fit the given
data set, regardless of the values assigned to other parameters.

One possible solution conjectured in [13] to explain this discrepancy was that the measurement of CFSE FI
may be indicative of the concentration of CFSE, rather than its mass. The observations, then, would represent
an effective integration over the various cell volumes present in the data. While appealing, this explanation does
not appear to be the case. Physically, one expects that measured CFSE FI would depend on the number of
CFSE molecules within the cell, and hence on the mass of CFSE. Indeed, when cells stained with CFSE are
introduced to a stimulating agent, the cells quickly increase in size (thus decreasing the CFSE concentration),
but the measured CFSE FI is essentially unchanged [50, Fig. 6].

We propose here an alternative solution to this apparent γ-related dilemma. While it is often stated that
the subsequent peaks in the CFSE histogram data are evenly spaced [49], close observation reveals that this is
not actually the case. Although the peaks corresponding to low division numbers (Generations 0, 1, 2, 3) are
approximately evenly spaced, peaks corresponding to larger division numbers are closer and closer together [50,
Fig. 1]. In other words, the parameter γ appears to change with division number.

These observations can be collectively explained by the consideration of cellular autofluorescence and its
effects on the measurement process. As discussed in Section 2, the flow cytometer measurement process uses light
as a surrogate for CFSE content. However, not all light incident upon the photodetector is the result of emission
from CFSE molecules. All cells, even those unstained with CFSE, have a natural brightness and will give off
small but detectable amounts of light. We assume here that this feature, the cellular autofluorescence does not
change as cells divide and does not decay slowly like CFSE fluorescence. It may vary with time for other reasons
[3], but we ignore this in our initial treatment.

Let Xi be the total measured FI of a single cell, measured when that cell has undergone i divisions. (The use
of the capital letter is meant to distinguish this discrete quantity from the continuous state variable to be used
in the revised model derived below.) Under the assumption that cellular autofluorescence intensity (AutoFI) and
CFSE FI are additive, then the total fluorescence intensity of a cell is

Xi = XCFSE
i +XAuto. (2)

Because AutoFI does not change as a cell divides, it follows that this cell with intensity Xi will generate two cells
in the next generation, each of which has total FI

Xi+1 = XCFSE
i /2 +XAuto. (3)

Contrary to previous interpretations of the parameter γ, one can see from Equation (3) that it is actually expected
that the ratio of total FI of a mother cell to that of a daughter cell is expected to be less than 2. Moreover,
provided XCFSE

i >> XAuto, this ratio is approximately equal to two. With each division, XCFSE
i decreases and

the ratio decreases; as XAuto accounts for a larger and larger percentage of the total measured FI, the ratio
decreases quicker and quicker until XCFSE

i ≈ 0 and the ratio of mother-to-daughter intensities is approximately
1. Thus it appears that cellular autofluorescence is sufficient to account for the observed relationships between
subsequent division peaks in the data. Indeed, this is shown to be the case in Section 5.

We remark that the phenomenon of autofluorescence when using fluorescent dyes to study biological materials
is not particularly new. In fact, the role of AutoFI described above was acknowledged specifically for CFSE data
sets as early as 1996 [36], and a formula corresponding to (3) above appears in [49]. However, autofluorescence has
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not been used in previous PDE formulations [13, 45, 47] to describe the dilution of CFSE by division. Thus the
incorporation of AutoFI into the mathematical model presented below is an important revision to the physiological
basis of the PDE model.

3.2 Revised Model Derivation

At this point, we pause momentarily in order to revise the PDE model derivation from the Appendix of [13].
We do so to provide a general framework with which to build additional improvements to the model and inverse
problem procedure. As before, the derivation follows the mass-balance principles of the Bell-Anderson [17] and
Sinko-Streifer [60] models.

Let n(t, x) be the structured population density of a population of cells labeled with CFSE, where t is time (in
hours) and the structure variable x is a given fluorescence intensity (FI) of a cell (in arbitrary units of intensity,
UI). Then

N(t) =

∫ x1

x0

n(t, x)dx. (4)

represents the total number of cells with fluorescence intensity in (x0, x1) at time t. Here x0 and x1 are arbitrary.
Let ∆x(t, x,∆t) be the average increase of FI of cells with initial intensity x during the interval (t, t +∆t) and
assume that ∆t is chosen such that |∆x| << x1 − x0 (so that the number of cells which move into the region via
division and subsequently divide, die, or drift out of the region is negligible). It should be noted that ∆x will
be non-positive (as cells cannot increase in FI). Thus subtraction by ∆x actually results in a larger value. While
counterintuitive, this definition is maintained in order to harmonize with other structured population models.

Consider the change in N(t) during the time interval (t, t + ∆t), i.e., the quantity N(t + ∆t) − N(t). Five
possible contributions will be considered:

(i.) Cells with intensity in the interval [x1, x1 −∆x(t, x1,∆t)], losing FI according to ∆x:

∫ x1−∆x(t,x1,∆t)

x1

n(t, x)dx.

(ii.) Cells with intensity in the interval [x0, x0 −∆x(t, x0,∆t)], losing FI according to ∆x:

∫ x0−∆x(t,x0,∆t)

x0

n(t, x)dx.

(iii.) Cells which would have contributed to N(t+∆t) had they not died:

∫ t+∆t

t

∫ x1−∆x(t,x1,t+∆t−τ)

x0−∆x(t,x0,t+∆t−τ)

β(τ, x)n(τ, x)dxdτ.

(iv.) The disappearance of cells from the region due to proliferation:

∫ t+∆t

t

∫ x1−∆x(t,x1,t+∆t−τ)

x0−∆x(t,x0,t+∆t−τ)

α(τ, x)n(τ, x)dxdτ.

(v.) The gain of daughter cells (two of them) in the region as a result of proliferation in the parent region:

χ[xa,x∗]2

∫ t+∆t

t

∫ 2(x1−∆x(t,x1,t+∆t−τ))−xa

2(x0−∆x(t,x0,t+∆t−τ))−xa

α(τ, x)n(τ, x)dxdτ,

where x∗ = xmax/2 + xa and xa is the natural autofluorescence of unstained cells.

We remark that α and β are the rates of cell proliferation and death, respectively, with units hr−1. It follows that
the difference N(t+∆t)−N(t) is the sum of the components (i.) and (v.) less the contributions of components
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(ii.) - (iv.). Following the standard procedure of dividing by ∆t and letting ∆t → 0, we obtain dN
dt

on the left
side of the equation. We now treat the right side of the equation term by term.

For the first term on the right side, if n(t, x) is continuous in t and x (a reasonable assumption), the mean
value theorem (MVT) implies that there exists a θ ∈ [x1, x1 −∆x(t, x1,∆t)] such that

∫ x1−∆x(t,x1,∆t)

x1

n(t, x)dx = −∆x(t, x1,∆t)n(t, θ).

Assuming ∆x is continuous in ∆t (that is, there is no instantaneous label loss) and varies smoothly,

lim
∆t→0

−∆x(t, x1,∆t)

∆t
n(t, θ) = −v(t, x1)n(t, x1). (5)

where we have defined dx
dt

= v(t, x), the instantaneous rate of FI change of cells with intensity x and time t.
Applying the same argument for the second term,

−

∫ x0−∆x(t,x0,∆t)

x0

n(t, x)dx = v(t, x0)n(t, x0). (6)

In the consideration of the third term, define

uβ(τ) =

∫ x1−∆x(t,x1,t+∆t−τ)

x0−∆x(t,x0,t+∆t−τ)

β(τ, x)n(τ, x)dx.

Then if ∆x(t, x,∆t) and β(τ, x)n(t, x) are continuous functions of their variables, so is uβ(τ) and by the MVT,
there exists a θ′ ∈ [t, t+∆t] such that

1

∆t

∫ t+∆t

t

uβ(τ)dτ = uβ(θ
′).

Thus it follows that

lim
∆t→0

uβ(θ
′) = uβ(t) =

∫ x1

x0

β(t, x)n(t, x)dx, (7)

assuming ∆x(t, x, 0) = 0 for all t, x (which follows from the previous assertion regarding the smoothness of ∆x
in ∆t). Using a similar argument for the fourth term,

lim
∆t→0

uα(θ
′) = uα(t) =

∫ x1

x0

α(t, x)n(t, x)dx, (8)

where uα(τ) has the obvious definition. For the final term, the same argument along with the change of variables
ξ = (x+ xa)/2 results in

χ[xa,x∗]2 lim
∆t→0

uα̃(θ
′) = χ[xa,x∗]4

∫ x1

x0

α(t, 2x− xa)n(t, 2x− xa)dx. (9)

Altogether, we can assemble (5) - (9) to obtain

dN

dt
= −v(t, x1)n(t, x1) + v(t, x0)n(t, x0)−

∫ x1

x0

β(t, x)n(t, x)dx

−

∫ x1

x0

α(t, x)n(t, x)dx + χ[xa,x∗]4

∫ x1

x0

α(t, 2x− xa)n(t, 2x− xa)dx.

On the left side, differentiating N(t) =
∫ x1

x0
n(t, x)dx with respect to t results in

dN

dt
=

∫ x1

x0

∂n(t, x)

∂t
dx.

9



Finally, by applying the Fundamental Theorem of Calculus to the first two terms on the right side, simplifying
and rearranging,

∫ x1

x0

∂n(t, x)

∂t
+

∫ x1

x0

∂(v(t, x)n(t, x))

∂x
=

−

∫ x1

x0

(α(t, x) + β(t, x))n(t, x) + χ[xa,x∗]4

∫ x1

x0

α(t, 2x− xa)n(t, 2x− xa).

Equivalently (because x0 and x1 were arbitrary),

∂n(t, x)

∂t
+

∂[v(t, x)n(t, x)]

∂x
= (10)

− (α(t, x) + β(t, x))n(t, x) + χ[xa,x∗]4α(t, 2x− xa)n(t, 2x− xa).

We remark that the above derivation is not very different from that already presented in [13]. The key
differences are the notational change in permitting the dependence of the proliferation and death rates (α and β)
and the label loss rate (v) on both time t and measured FI x. This model also explicitly incorporates the even
division of CFSE between daughter cells while also accounting for the presence of cellular AutoFI.

3.3 Gompertz Decay of Label

Given the model (10), we now turn our attention to the label loss rate v(t, x). Because the mathematical model
estimates cell proliferation and death rates in terms of the CFSE FI structure variable (as a surrogate for division
number), the manner in which CFSE naturally decays directly affects the cell turnover parameter estimates.
Thus, our understanding of the underlying biology (in the form of cell proliferation and death rate estimates) is
closely tied to the accurate modeling of label decay. In order to provide parameter estimates which are unbiased,
it is of vital importance that the label loss rate v(t, x) accurately reproduces the natural decrease in CFSE FI
observed in the data.

It was hypothesized in [47] that an exponential rate of loss is sufficient to model the label loss observed in the
data. In order to validate this assumption, a PBMC culture was taken from two donors and stained with CFSE
following the standard procedure. However, these cells were not stimulated to divide. Because only viable cells
are included when the cytometry data is gated, any decrease in mean FI in the population must be the result of
natural CFSE FI decay. Over the course of 160 hours, cells from each donor were measured at 24 distinct time
points in triplicate and the mean total FI of each sample was recorded. The data is given in Table 1 and is shown
graphically in Figure 3.

We would like to determine what functional forms might be used in order to quantify the label loss observed
in the data. Following the assumptions of [13, 47], we begin with a model of label loss that decays exponentially
to the autofluorescence of unlabeled cells,

x1(t) = (x(0) − xa)e
−ct + xa. (11)

However, it appears from the data (particularly for Donor 1) that the rate of exponential decay of label may itself
decrease as a function of time. This can be modeled by the Gompertz decay process [40, pg. 12]

x2(t) = (x(0) − xa)exp
(

−
c

k

(

1− e−kt
)

)

+ xa. (12)

The loss rate function, of vital importance to the PDE formulation (10), is v(t, x) = dx
dt
. Thus the equations

(11 - 12) correspond to the loss rate functions

v1(x) = −c(x− xa), (13)

and
v2(t, x) = −c(x− xa)e

−kt, (14)

respectively. We remark that (12) is a generalization of (11), the latter being the limiting value (as k → 0) of
the former. Thus, it would be ideal to fit both models to the data and use statistical tests to determine if the
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Time (hours) Donor 1 Donor 2
0.00 44311 43272 45369 40878 41593 41993
2.00 33782 37720 36961 36755 32585 25705∗

4.00 29331 30043 29634 30818 28565 27144
6.00 29235 28526 31283 26498 27666 26354
8.00 25899 27229 29839 25856 18404∗ 25060
10.00 26651 27691 27406 24846 25336 –
12.50 29471 27610 27852 24172 25506 26290
19.25 27201 27254 24718 30272∗ 26922 26937
21.25 27062 23601 25342 27436 27646 29527
23.25 20758 24967 24640 25680 26474 26482
25.25 26585 23512 23400 25947 26711 26379
27.25 23356 24882 22898 26040 25551 28393
29.25 23660 21729 24288 23975 22490 23471
31.50 22768 20914 21268 21153 21244 21759
33.25 23897 24198 24758 25337 24053 24749
50.25 22623 23504 24696 26138 25672 27361
54.75 21910 21120 21986 25777 24564 26069
59.25 21877 26290 23829 21932 21302 27558∗

77.25 22099 24160 21420 25769 24108 26511
85.75 20731 21827 22108 26604 26293 26306
98.75 21468 20993 21220 22869 21760 22579
123.75 18836 18887 18313 20369 20533 21003
131.25 20132 20119 20799 20908 22234 26666∗

150.75 22199 19822 – 26542 23417 –

Table 1: Data sets collected from Donor 1 and Donor 2, rounded to the nearest integer. Several outliers are
noticeable in data from Donor 2 and have been marked with an asterisk. All data is given in arbitrary units of
intensity (UI).
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Figure 3: CFSE Intensity Data from unstimulated cells. Left: Donor 1. Right: Donor 2.
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Figure 4: Results of fitting the exponential model (11) to the mean CFSE data in Table 1. For both Donor 1
(top) and Donor 2 (bottom), we see from both the fit to the data (left) and the residual plot (right) that the
model is not capable of accurately replicating the observed data when xa is set to 50.

Model Donor 1 Donor 2
Exponential 1.176515× 109 1.073325× 109

Gompertz 2.853192× 108 4.285324× 108

Table 2: OLS cost values for fitting the exponential (11) and Gompertz (12) to the CFSE decay data from two
donors of Table 1. We see a very clear reduction in cost when using the Gompertz model.

model refinement is warranted. However, it is not possible to uniquely identify the parameter xa in either of the
two models using an ordinary least squares procedure with only the data from Table 1. On the other hand, the
parameter xa appears in other parts of the model (10), and it seems possible to conclude that this parameter
would be readily identifiable once incorporated into (10) with the full proliferation data.

In order to at least begin to compare these two models, we set the parameter xa to the physiologically
reasonable value of 50 in both models. (Values reported in the literature ranged from 10 to 100 [48, Figure 1],
[50, Figure 2] and [56, Figure 3].) An ordinary least squares (OLS) procedure is then used to fit the remaining
parameters (c and x(0) for the Exponential model, c, k and x(0) for the Gompertz model) for data from both
donors. The results for the exponential model are shown in Figure 4 and the results for the Gompertz model are
shown in Figure 5. Based upon the lines of best fit in comparison with the data, it seems clear that the Gompertz
decay model more accurately describes the available data. This is confirmed by the comparison of cost given in
Table 2.

A few additional comments are in order. First, we remark that, while the parameter x(0) is included in the
models (11) and (12) used to fit the CFSE label loss data sets, it is actually the loss rate function (either (13) or
(14)) that will be included in the PDE model (10) and thus this parameter will not actually require estimation in
the full PDE model. Also, when using CFSE-labeled cells for a proliferation assay, there is an additional hour of
preparation time between CFSE labeling and the first measurement time, during which the cells are stimulated
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Figure 5: Results of fitting the Gompertz model (12) to the mean CFSE data in Table 1. We see a much improved
fit to both donors when compared to the exponential fit of Figure 4. For both donors the parameter xa of (12)
is set to 50.
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to divide. Thus we would expect slightly different parameter estimates when either of these models is used with
proliferation assay data. Moreover, because this additional hour of preparation time occurs during the first hour
after staining, the rapid decay observed in both data sets in Figure 3 may be partially removed from the data.
Because of these considerations, it is unclear exactly how much improvement to expect from using (14) as opposed
to (13) in (10).

We also remark that the primary reason for the failure of the exponential model is the location of the
equilibrium point in the data (as compared to that predicted by the model). We see from Equation (11) that the
exponential model predicts x → xa as t → ∞. However, it is known that CFSE stained cells retain detectable
fluorescence for up to several weeks in vivo [50]. The exponential model cannot accurately account for both the
rapid decline in CFSE FI during the first few hours of staining and the slow decline once the label has been stably
incorporated. (We can, for the current data sets, allow xa to attain values of approximately 2.2×104; in this case
the exponential model fits the data at least as well as the Gompertz model. However, this is not a physiologically
reasonable value of xa.)

Physiologically , it is known that after the conversion of CFDA-SE to CFSE by intracellular esterases, CFSE
can still exit the cell at a slow rate (compared to free diffusion). However, the succinimidyl group of CFSE reacts
covalently with amines attached to intracellular proteins. While some of the resulting conjugates are short-lived
(either because they exit the cell or are rapidly degraded) other conjugates are stably incorporated inside the
cell and remain so for an extended period of time. These stable conjugates are decreased further only by the
natural turnover of the intracellular proteins to which they are bound [54]. These processes combine to produce
the commonly observed “biphasic decay” of CFSE FI over time [51, 66]. In other words, it seems necessary for
the rate of CFSE FI (exponential) decay to decrease in time. This is precisely the feature of the Gompertz decay
model [40].

4 Parameter Estimation Procedure

With the primary features of the revised model now addressed, we are ready to validate the model with data.
The current model, accounting for CFSE AutoFI and the Gompertz decay of the label, is

∂n(t, x)

∂t
− ce−kt ∂[(x− xa)n(t, x)]

∂x
= (15)

− (α(t, x) + β(t, x))n(t, x) + χ[xa,x∗]4α(t, 2x− xa)n(t, 2x− xa).

At the right boundary (x = xmax), we expect that there are no cells which can drift (via label loss) into the
computational domain. At the left boundary, a zero flux condition is imposed to prevent cells from drifting to
CFSE FI values less than the AutoFI of unlabeled cells. Thus the boundary conditions are

n(t, xmax) = 0 (16)

v(t, xa)n(t, xa) = 0.

Note from (14) we have v(t, xa) = 0 for all t, and hence the left boundary condition is trivially satisfied. Finally,
we assume we are given some initial condition

n(0, x) = Φ(x), (17)

which is the initial distribution of cells as a function of FI.

4.1 Model Change of Variables

While the model (15) and its associated initial and boundary conditions suitably describe the dynamics for a
CFSE labeled population of dividing lymphocytes, the model is not conducive to finite difference methods for
numerical solutions. The CFL condition for stability requires

∆t <
∆x

max |v(t, x)|
=

∆x

max c(x − xa)
. (18)
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Because xmax >> xa, the computational domain is quite large, and max(x − xa) ∼ 10000. Moreover, this large
domain must have a relatively fine mesh, as features of the solution become less distinguishable with increasing
division number. We see that, given c ∼ 0.1, k ∼ 0.001, and ∆x ∼ 0.1 (all reasonable parameters), it would take
upward of 105 time steps to compute the solution out to t = 120 hours, and this must be done for 105 points
on the structure variable grid. Rather than attempt these expensive computations, we seek a change of variables
that will lead to a faster numerical solution.

The most immediate choice is to use the change of variables z = log10 x, as the data is given in this coordinate.
While this change of variables was effective in [13, 47], it is less effective here because of the different form of the
label loss rate function. Instead, we use the change of variables y = log10(x− xa). Then x = 10y + xa and

dy

dx
=

1

(x− xa) ln(10)
.

Let ñ(t, y) = 10y ln(10)n(t, x(y)) = 10y ln(10)n(t, 10y + xa). We remark that the factor 10y ln(10) arises from the
chain rule in the integral form of (15) and is needed to conserve the total label in the population. With this
change of variables the new PDE model is

∂ñ

∂t
− ce−kt ∂

∂y

[

ñ(t, y)

ln 10

]

= −(α̃(t, y) + β̃(t, y)− ce−kt)ñ(t, y) (19)

+ χ(−∞,y∗]2α̃(t, y + log10 2)ñ(t, y + log10 2),

where α̃(t, y) = α(t, x(y)), β̃(t, y) = β(t, x(y)) and y∗ = ymax − log10 2. The new initial condition is Φ̃(y) =
10y ln(10)Φ(t, 10y + xa). The right boundary condition follows immediately from (16) while the left boundary
has been removed to y = −∞. We remark that the CFL condition for the PDE (19) is

∆t <
∆y ln 10

ce−kt

which is significantly easier to satisfy.

4.2 Parameterizations of α and β

We next turn our attention to the parameterizations of the functions α(t, y) and β(t, y). Because our goal
is the estimation of lymphocyte division and death rates from data, we use finite-dimensional approximations
of the function spaces containing α and β so that the problem is computationally tractable and theoretically
sound [11, 12]. Previous work has established that division-linked changes in proliferation and death rates are
an important aspect of an accurate mathematical model [42, 46]. One of the primary motivating assumptions
behind the use of a PDE model for fitting CFSE data is that the dilution of CFSE dye by division allows for
the structure variable (in this case, y) to be used as a surrogate for division number [13, 45, 47]. Thus division-
dependent changes in proliferation and death rates are encapsulated in the structure dependence of the functions
α and β.

While a straightforward implementation of structure dependence for α and β has proven effective, the fact
that the measured FI of a cell slowly decreases in time as a result of label loss indicates that one should take
care in how the correlation between division number and structure variable is considered. As discussed at greater
length in [6, 13], this label loss causes such correlation to lessen significantly. Alternatively, one might consider the
total FI that would have been measured for a cell, if that cell did not experience any label loss. Mathematically, it
is shown in [6] that this is equivalent to deriving a model in terms of an ideal label which does not decay and then
changing one’s frame of reference to a moving coordinate system in which the label does appear to decay (i.e.,
the one relative to which the data is actually taken). Similar situations frequently arise in mechanics and fluid
dynamics, where discussions of Eulerian and Lagrangian formulations abound. The key argument is to identify
a cell not by its current state y, but rather by the state it would have in the event it did not undergo label loss.
For a cell with state y at time t, this is equivalent to finding the intersection of the y-axis with the characteristic
line passing through (t, y). Given the characteristic lines

dy

dt
=

−ce−kt

ln 10
,
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it follows that the cell located at (t, y) was originally located (in the absence of division) at

s(t, y) = y +
c

k ln 10
(1− e−kt).

It is shown in [6, 13] that the quantity s(t, y) is more strongly correlated with division number than the
quantity y. Moreover, the use of this ‘translated coordinate’ for the parameterization of α and β provided a
more accurate model of the observed data when compared to the simple implementation of spatial dependence.
It was hypothesized that the improvement resulted from a more direct association between division number and
proliferation rate. However, that analysis was done with a different label loss function, and we desire to repeat the
analysis of [13] with the new model (19) and new label loss function (equivalent to (14)). Thus we consider four
different parameterizations of the proliferation rate α. In Section 5, results will be reported which demonstrate
the effects of these different parameterizations on the effectiveness of the model.

First, we consider the simple case that α = α(y). Given a fixed set of nodes {yk}, we assume

α = α(y) =

Kα
∑

k=1

akl
(α)
k (y), (20)

where lαk (y) are piecewise linear spline functions satisfying

lαk (yj) =

{

1, j = k
0, j 6= k

.

It is assumed that α(0) = α(3.5) = 0. This assumption does not have a significant impact on the model as the
nodes {yk} are chosen so that the proliferation rate can be varied as necessary at all values of the state variable
where cells appear in the data. It does, however, add some measure of regularity to the computed proliferation
rate function.

Alternatively, as discussed above, it may prove more accurate to use the translated coordinate s in order to
represent the proliferation rate of cells with a particular division number. Given a fixed set of nodes {sk}, we
assume

α = α(s) = α(s(t, y)) =

Kα
∑

k=1

akl
(α)
k (s), (21)

where the functions lαk (s) are defined as above. Again, it is assumed that α(0) = α(3.5) = 0.
We also consider the possibility that the proliferation rate depends explicitly on time. Indeed, we see in

the data in Figure 1 that there is no proliferation at least during the first 24 hours of the assay. However, by
t = 48 hours, it is clear that the population has begun to divide. Thus the assumption of time dependence seems
appropriate. As above, we can still consider the proliferation rate either in terms of the state variable y or in
terms of the translated coordinate s, in addition to its dependence on time. Given a set of nodes {yk} as above
and a set of time nodes {tm}, we parameterize

α = α(t, y) =

Kα
∑

k=1

M
∑

m=1

akml
(α)
k (y)l(t)m (t), (22)

where we now assume that the splines l
(α)
k (y) and l

(t)
m (t) are piecewise linear in their respective variables. Again,

we ensure smoothness in the forward simulation by requiring α(t, 0) = α(t, 3.5) = 0. It is also assumed that
α(t, y) = 0 for all t ≤ 24 hours.

Finally, we also consider the case that α is parameterized in time as well as the translated coordinate s. Given
nodes {tm} as above and nodes {sk} in the translated variable, the proliferation rate function is then

α = α(t, s) = α(t, s(t, y)) =

Kα
∑

k=1

M
∑

m=1

akml
(α)
k (s)l(t)m (t), (23)

where we again assume the splines l
(α)
k (y) and l

(t)
m (t) are piecewise linear. As before, it is assumed α(t, 0) =

α(t, 3.5) = 0 and α(t, s) = 0 for all t ≤ 24 hours.
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Results from [13, 45, 47] indicate that the death rate function need not be quite as complex as the proliferation
rate function. After the first few generations, the death rate of cells seems to be roughly constant. There is little
reason to suspect that the death rate function depends on time and we do not consider it here. As before, we
consider using the state variable y and the translated coordinate s to parameterize the death rate function. Given
nodes {yk} (which may be distinct from the nodes used in the estimation of the proliferation rate α), we have

β = β(y) =

Kβ
∑

k=1

bkl
(β)
k (y). (24)

We assume β(y) = b1 for all y ∈ [0, y1] and β(y) = bKβ
for all y ∈ [yKβ

, 3.5]. Alternatively, using the translated
coordinate, we have nodes {sk} and

β = β(s) = β(s(t, y)) =

Kβ
∑

k=1

bkl
(β)
k (s) (25)

with the assumptions β(s) = b1 for all s ∈ [0, s1] and β(s) = bKβ
for all s ∈ [sKβ

, 3.5].

4.3 Computational Considerations

The change of variables y = log10(x − xa) is a parameter-dependent change of variables, technically requiring a
‘re-gridding’ of the solution each time the parameters (specifically xa) are changed in an optimization routine for
the inverse problem. Because we use a time-stepping finite-difference method to compute the forward solution for
a given set of parameters, this requirement does not constitute a great computational setback. In fact, observation
of (19) reveals that the parameter xa does not appear directly in the equation to be solved, only in the change
of variables that gives rise to the equation. The primary issues involve the determination of the initial condition
from the data, and the comparison of the computed model solution to the data.

4.3.1 Formation of the Initial Condition

As discussed in Section 2, the cytometry data is reported as a time-series of histograms showing the numbers of
cells counted into a given bin corresponding to a particular range of log CFSE FI values. That is, the histogram
measures cells in the z = log10 x coordinate. While it is, in general, possible for the experimenter to set the bins
to his/her own liking, we again recall that the current data set was obtained with bins already set. The original
data set, as used in [13], was taken at 24 hour intervals over the course of 6 days. Data from Day 0 (t = 0 hours)
is used to form the initial condition for the model in the manner described below; the remaining data is used to
fit the model to the data. At time ti, the data is stored as a set of ordered pairs (zji , n

j
i ), j = 1, . . . , J(i) (the

notation is meant to emphasize that the bins change each day). This ordered pair corresponds to the number of
cells nj

i counted into the bin with left boundary zji . (As a consequence, notice that we are unable to determine
the width of the right-most bin at each time point; these points are simply removed from the data set).

Using the data taken at t = 0, we drew a smooth line through the data; ordered pairs representing the line
were then determined using DataThief [63]. These smoothed histogram curves were then scaled upward into a
smooth initial condition density Φ̂(z) so that the total label content is the same for the smooth density as for
the original histogram data. The results are depicted in Figure 6. Finally, given the initial condition Φ̂(z), we
transform this into an initial condition for ñ(t, y) by noting that y = log10(10

z−xa) and using the label-preserving
identity

Φ̂(z) =
10z

10z − xa

Φ̃(y(z)). (26)

This, then, provides an initial condition for (19).

4.3.2 Comparison of the Model to the Data

While the procedure above provides a means of determining a smooth initial condition density Φ̃(y) from the
smoothed histogram data, the comparison of the model, a density defined in terms of y, to the data, a histogram
in terms of z, represents the opposite problem. In order to make this comparison, we need to perform two steps.
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Figure 6: Left: Smoothed histogram data at t = 0 in the z coordinate. Right: Density function computed from
the smoothed histogram data.

First, we must transform the structured density ñ(t, y) into a function of z. This is done analogously to the
transformation (26) above. Second, we must transform this structured density into histogram numbers. To do
this, we note that at time ti, the total number of cells with FI between zji and zj+1

i is

I[n̂](ti, zj) ≡

∫ z
j+1

i

z
j
i

n̂(ti, z)dz ≈

[

n̂(ti, z
j+1
i ) + n̂(ti, z

j+1
i )

2

]

(

zj+1
i − zji

)

, (27)

where the trapezoid rule has been used to approximate the integral. In general, we find that this is an effective
method of obtaining histogram counts from the smooth density model solution. However, the varying sizes of the
bins used to record the available data set poses somewhat of a problem. While the bins are generally regularly
spaced, there are a few bins randomly placed in the data which are either much larger or much smaller than the
neighboring bins. As a result, the histogram data I[n̂](ti, zj) computed from the smooth densities exhibits large
jumps up or down at these points. This is strictly the result of the irregular bin sizes present in the data set and
not the model solution itself. These jumps are problematic for the OLS procedure discussed below and as such
these bins are removed from the data set. We emphasize again that, in future data sets, the bins can be set as
needed, rather than being fixed in advance.

4.3.3 Finite Difference Computations

While (19) is defined on an infinite domain, all cells in the population maintain FI sufficiently greater than xa, so
that it is acceptable to solve (19) only on the domain y ∈ [0, ymax]. In practice, we set ymax independent of the
parameter xa and thus solve the equation (19) on the same computational domain regardless of the parameters
(i.e., those passed in by the nonlinear optimization solver). Once the solution n(t, y) is computed, it is possible
to use (26) again to change variables back to n̂(t, z) for comparison to the data.

For the current data set, we use 512 evenly spaced nodes in the interval y ∈ [0, 3.5]. The forward solution
is computed using a publicly available hyperbolic PDE solver written by L. Shampine which implements the
Lax-Wendroff scheme.

4.4 Ordinary Least Squares Framework

Given the appropriate parameterizations of α and β, we now have a complete set of parameters θ = (xa, c, k, {a}, {b})
which define the model solutions. Thus in the analysis below we think of the parameterized model ñ(t, y; θ) sat-
isfying (19) given parameter θ. We now turn our attention to an inverse problem procedure which seeks to
determine the parameters best describing the available data.

Following standard inverse problem procedure for ordinary least squares (OLS) [14, 20, 21], we assume that
the data n̂j

i represent an observation of the model solution evaluated at the true parameter θ0 with the addition
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Parameter Minimum Maximum Units
ai 0 1 hr−1

bi 0 1 hr−1

xa 0 100 UI
c 0 0.1 UI/hr
k 0 0.005 hr−1

Table 3: Summary of parameters θ = (xa, c, k, {a}, {b}) which define the model solution, with minimum values,
maximum values, and units. Forward simulations of the model demonstrate the reasonableness of the bounds
provided.

of some amount of noise. Thus, we can consider the data as a random variable

N j
i = I[n̂](ti, zj; θ0) + Eij , (28)

where {Eij} are random variables with E[Eij ] = 0 and V ar(Eij) = σ2. We remark that the assumption of constant
variance for the error terms is standard for OLS formulations of inverse problems. One can examine the accuracy
of such an assumption ex post facto through the use of residual-based statistical tests [7, 14, 58]. In [13], such an
analysis revealed that the actual error variance was neither constant nor proportional to the square of the model
solution (a ‘relative error model’). For the moment, we remark that the OLS assumption of constant variance,
while possibly not exactly correct and hence not adequate for use in asymptotic parameter distributional analysis,
is sufficient to provide a basis for computational parameter estimation, which will demonstrate the ability of the
current model to fit the available data set. Given our uncertainty regarding the exact nature of the observed
error process, we postpone a more detailed analysis of uncertainty in the estimated parameters (standard errors,
confidence intervals, etc.) [7] for future work that will entail further experimental measurement error analysis
and characterization.

Given the statistical model (28), we can write the data as realizations

nj
i = I[n̂](ti, zj ; θ0) + ǫij (29)

of the random variables (28). The goal of the OLS procedure is the determination of the parameter θ which
minimizes the sum of squared residuals. Given the random variables N j

i from (28), the OLS estimator is

θOLS = argmin
θ∈Θ

I
∑

i=1

J(i)
∑

j=1

(I[n̂](ti, zj ; θ)−N j
i )

2 = argmin J(θ), (30)

where Θ is a set of admissible parameters for the model (see Table 3). As the data nj
i are realizations of the

random variables N j
i , it follows that the OLS estimate

θ̂OLS = argmin
θ∈Θ

I
∑

i=1

J(i)
∑

j=1

(I[n̂](ti, zj ; θ)− nj
i )

2 = argmin J(θ), (31)

is a realization of the OLS estimator θOLS. This optimization was carried out with the MATLAB constrained
optimization routine fmincon, which implements the BFGS algorithm at each step to solve a quadratic sub-
problem. Because such routines can become trapped in local minima, several initial iterates were tried for each
optimization.

5 Results

The primary uncertainty in the inverse problem procedure is the choice of nodes {yk} for the estimation of the
proliferation and death rates. We have no a priori information as to how many nodes should be used nor any
information regarding where those nodes should be placed. To illustrate this point, in Figure 7 we depict the
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Division Number z-axis Range 7 Nodes 13 Nodes 25 Nodes
6 [0.00, 1.05] 0.0016 0.0015 0.0016
5 [1.05, 1.30] 0.0043 0.0050 0.0052
4 [1.30, 1.60] 0.0094 0.0103 0.0108
3 [1.60, 1.90] 0.0166 0.0174 0.0206
2 [1.90, 2.25] 0.0325 0.0308 0.0314
1 [2.25, 2.55] 0.0284 0.0198 0.0266
0 [2.55, 3.50] 0.0047 0.0097 0.0072

Table 4: Average proliferation rates (in units 1/hr) in terms of numbers of divisions undergone, computed from
Figure 7. Using Figure 1, approximate ranges (in the coordinate z) corresponding to particular division numbers
are determined. These are then used to compute the corresponding ranges in the variable y using the estimated
level of cellular autofluorescence. In spite of the differences in the numbers of nodes used in the parameterization
of the proliferation rate function α(y), average proliferation values are estimated consistently for each generation.

estimated proliferation and death rate functions given three different choices of nodes {yk}. First, seven nodes
were evenly spaced in the interval [1.125, 2.925]. Next the number of nodes was increased to 13 so that the
separation between nodes was halved (and so that the increase in parameters is a refinement to the model).
This procedure was repeated and the estimation was performed a third time with 25 nodes. Intuitively, each
refinement must provide a more accurate fit of the model to the data, as the total OLS cost cannot increase as
the number of parameters is increased. However, we also see in Figure 7 that as the number of nodes increases,
the estimated proliferation rate function becomes less regular. Conversely, we see that some measure of regularity
can be imposed on the function α(y) by choosing the proper set of nodes with which to estimate it (a so-called
‘regularization by discretization’ [10, 11]). While we do have available residual-sum-of-squares based statistical
tests [7, 8, 14] to quantify the improvement in the model with each refinement, we choose to balance this additional
information with a desire to estimate a semi-regular function α.

It is worth remarking further that the increasingly complex structure of the function α(y) (as the number
of nodes is increased) is only a relic of the estimation procedure and has nothing to do with any meaningful
information regarding the population of cells being studied. In order to verify this, in Table 4 we present, for each
parameterization of the function α(y) discussed in the previous paragraph, the average value of the estimated
proliferation rate in terms of the numbers of divisions the cells have undergone. To compute these values, Figure
1 is used to determine approximate ranges (in the coordinate z) corresponding to each generation of cells. By
changing these ranges from the variable z to y (in which the estimation of the proliferation rate function was
performed), the average value of the proliferation rate function can be determined in each range. As seen in Table
4, the estimates are reasonably consistent regardless of the number of nodes used in the estimation.

Given the above discussion, we choose 13 nodes for the estimation of the proliferation rate function α(y) and
5 nodes for the estimation of the death rate function β(y) in an effort maximize the flexibility of the estimation
while also maintaining some regularity in the estimated functions. The OLS best-fit solution is shown in Figure
8. The optimal proliferation and death rate functions are shown graphically in the center panels of Figure 7, with
numerical values provided in Tables 5 and 6. The total OLS cost for the estimation is J(θ̂OLS) = 1.7270× 1012,
with xa = 8.2316, c = 5.6169× 10−3, and k = 1.1203× 10−8.

We observe that, while the OLS best-fit solution for time-independent proliferation is accurate for t = 96
and 120 hours, the model predicts far too many cells with high generation number at t = 24 and 48 hours. This
seems to be a manifestation of the absence of a delay (in the form of time dependence) between the time cells are
stimulated and the time at which those stimulated cells divide. Thus, in addition to the arguments of Section 4.2,
we have a mathematical rationale for the incorporation of time dependence into the proliferation rate. While the
model does not accurately count the numbers of cells in the earlier time points, we do remark that the Gompertz
label loss model and the incorporation of cellular AutoFI do accurately predict the location (along the horizontal
axis) of the subsequent generations of cells in culture. Thus, it appears safe to conclude that the parameter γ
from [13, 47] has been effectively removed from any modeling needs.

Given this discussion, we next consider the possibility that the proliferation rate function α(t, y) may depend
on time as well as on the structure variable y (see Section 4.2) in order to better estimate the numbers of cells in
each generation at a given time. We would like to make use of model refinement techniques in order to quantify
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Figure 7: Left: Estimated proliferation rate function for three difference choices of nodes. Top: 7 nodes evenly
spaced in [1.125,2.925]. Middle: 13 nodes evenly spaced in [1.125,2.925]. Bottom: 25 nodes evenly spaced in
[1.125,2.925]. Note that, while the overall shape of α(y) remains largely the same, the middle figure seems to
provide the most information while remaining some semblance of regularity. These functions can be used to
determine the average rate of proliferation in terms of the number of divisions undergone (Table 4). Right: the
corresponding estimated death rate function β(y), estimated using 5 fixed nodes in each case.
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Figure 8: OLS best-fit solution with α = α(y) (13 nodes), β = β(y) (5 nodes). 21 total parameters in the model,

total cost J(θ̂OLS) = 1.7270× 1012. While the model clearly is not accurate in allowing far too many cells with
large division number too early in time, the locations of the division peaks along the horizontal axis are quite
accurate, in support of the role of autofluorescence as well as the Gompertz decay of label.

y
(α)
k ak

1.1250 0.0073
1.2750 0.0123
1.4250 0.0097
1.5750 0.0196
1.7250 0.0136
1.8750 0.0262
2.0250 0.0353
2.1750 0.0301
2.3250 0.0247
2.4750 0.0137
2.6250 0.0084
2.7750 0.0034
2.9250 0.0199

Table 5: Results for the OLS estimation of α(y) with 13 nodes. This estimated proliferation rate function is
shown graphically in the left-center panel of Figure 7. Average rate of division in terms of division number is
computed in Table 4.
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y
(β)
k bk

2.0000 0.0000
2.5000 0.0000
2.7500 0.0278
3.0000 0.0017
3.2500 0.0051

Table 6: Results for the OLS estimation of β(y) with 5 nodes when α = α(y) is estimated with 13 nodes. This
estimated death rate function is shown graphically in the right-center panel of Figure 7.

the resulting improvement in the fit of the model to data while also accounting for the increased complexity
of the model. Thus, we use the same 13 nodes as above for the structural discretization of α. For the time
discretization, nodes {tm} = [48, 60, 72, 96, 120] are used. The death rate function β(y) is estimated exactly as
before. This parameterization results in a model with 73 parameters. After calibration to the data, the resulting
cost is J(θ̂OLS) = 3.1302× 1011 with xa = 6.2698, c = 4.8123× 10−3, and k = 9.8091× 10−8; the fit of the model
to the data is shown in Figure 9. It is clear from the figure that the improvement in fitting the model to the data
is quite significant. Moreover, because the inclusion of time-dependence is a refinement of the time-independent
model, residual-sum-of-squares-based statistical tests exist to quantify whether the increase in complexity of the
model (from 21 to 73 parameters) is justified by the resulting reduction in cost. Using the method described in
[14, Ch. 3], we find that the time-independent model can be rejected in favor of time-dependent proliferation
with very high (> 99.999%) confidence.

Thus we see that, once the proliferation rate is allowed to vary as a function of time, the model very closely
mimics the data in terms of the numbers of cells in each generation at a given time. Moreover, we again point
out that the physiological explanation for the the dilution of FI by division, as well as the Gompertz model for
natural FI decay do an excellent job of predicting the locations (along the horizontal axis) of each generation of
cells. Still, we continue further to consider one more potential improvement to the model. Following the analysis
of [13] and the discussion of Section 4.2, we consider parameterizing the proliferation and death rate functions
in terms of the ‘translated coordinate’ s. As discussed previously, it is expected that this coordinate correlates
much more closely with division number than the coordinates z or y. As such, estimation of the proliferation and
death rates in terms of this quantity should provide a more meaningful (and less biased) estimate when these
estimated functions are analyzed in terms of division number (in the manner of Table 4). It is worth noting the
parameterization of the functions α and β in terms of s is not a model refinement (compared to parameterization
in terms of y) so that the model comparison tests described above are not directly applicable. While additional
(e.g. information-theoretic) tests could be used, we forgo that analysis here in the interest of brevity. However,
as will be shown, parameterization in terms of s does in fact provide a more meaningful correlation between the
estimated cell turnover rates and division number (in additional to providing a slightly lower cost!), which justifies
its use.

The nodes used from the proliferation and death rate functions, as well as the estimated rates at those
nodes, are given in Tables 7 and 8, respectively, and the functions are shown graphically in Figure 10. As before,
73 parameters arise in this parameterization of the model. The total cost is J(θ̂OLS) = 3.0901 × 1011, with
xa = 6.4053, c = 5.5246× 10−3, and k = 5.0323× 10−4; the fit of the model to the data is shown in Figure 11.

Visually, the fit of this model (using s for the structure discretization of the proliferation and death rates) is
comparable to the previous model (using y), and the cost is slightly lower. The significant advantage in using s,
as noted above, is that the translated coordinate s is more strongly correlated with division number. To see this,
the data from Figure 1 are shown in the translated coordinate in Figure 12. While there is still some overlap
among the generations of cells in the histogram data, the translated coordinate provides an axis on which cells
do not drift as they slowly lose CFSE FI. Particularly when compared to Figure 1, we see that it is much easier
to assign distinct regions of the s axis to particular division numbers when compared to using the z (and thus y)
axis. Moreover, because cells do not drift to the left on the s axis, regions assigned to particular division numbers
remain valid for all time.

Given the near-alignment of the generations of cells in the translated coordinate s, a similar analysis to that
presented in Table 4 can be performed. By determining intervals (in the s coordinate) corresponding to particular
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Figure 9: OLS best-fit solution with α = α(t, y), β = β(y). 73 total parameters in the model, total cost

J(θ̂OLS) = 3.1302× 1011.

tk

s
(α)
k 48 60 72 96 120

1.1875 0.0713 0.1404 0.0000 0.0000 0.0167
1.3375 0.2028 0.0522 0.0001 0.0000 0.0175
1.4875 0.6036 0.0303 0.0376 0.0009 0.0281
1.6375 0.2896 0.0138 0.0004 0.0075 0.0251
1.7875 0.0618 0.0001 0.0000 0.0409 0.0220
1.9375 0.0091 0.0345 0.0020 0.0119 0.0220
2.0875 0.0837 0.0002 0.0400 0.0326 0.0391
2.2375 0.0018 0.1956 0.0083 0.0001 0.0231
2.3875 0.0050 0.0059 0.0962 0.0394 0.0463
2.5375 0.0000 0.1949 0.0128 0.0050 0.0000
2.6875 0.0155 0.1101 0.1528 0.0422 0.0239
2.8375 0.0351 0.0446 0.0000 0.0000 0.0000
2.9875 0.0346 0.0000 0.0012 0.1317 0.0092

Table 7: Results for the OLS estimation of α(t, s). This estimated proliferation rate function is shown graphically
in Figure 10. Average rate of division in terms of division number is computed in Table 13.
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s
(β)
k bk

2.0000 0.0054
2.5000 0.0000
2.7500 0.0238
3.0000 0.0061
3.2500 0.0000

Table 8: Results for the OLS estimation of β(s) when α = α(t, s). This estimated death rate function is shown
graphically in Figure 10
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Figure 10: OLS best-fit proliferation and death rate function α(s, t) (top) and β(s) (bottom), respectively, when
the proliferation rate is assumed to depend on both s and t.
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Figure 11: OLS best-fit solution with α = α(t, s), β = β(s). 73 total parameters in the model, total cost

J(θ̂OLS) = 3.0901× 1011.
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Figure 12: Data for t = 24, 48, 96, 120, respectively, plotted in the translated coordinate s. Observe that the
peaks corresponding to distinct division numbers closely align.
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division numbers, the average rate of proliferation for cells having undergone a specified number of divisions can
be computed. Because we now have a proliferation rate which depends explicitly on time, we compute the average
proliferation rate (in terms of the number of divisions undergone) and display this information as a function of
time (rather than averaging in time as well) in Figure 13, thus preserving what we believe to be an important
feature of the population of cells (that the proliferation rates change in time).

6 Discussion

In this document, we have presented significant modifications and clarifications to the results of [13] and [47]. Of
primary importance is that the parameter γ, used in the previous model to heuristically explain the dilution of
CFSE resulting from cell division, has been replaced by a physiologically-based mechanism which accounts for
cellular autofluorescence. Also important is the use of the Gompertz decay process to explain the natural decay
of CFSE observed in the data. We have seen that these two improvements in the model are fully capable of fitting
the same data as in [13]. Moreover, these revisions provide clarity to the model because they can be understood
in terms of physiologically relevant and easily observable features of the data.

We also revise the manner in which the model, a structured density, is compared to the data, a series of
histograms. Because the data used in this report is already in histogram form, the irregular size of certain bins
caused some computational difficulty. In future experiments, direct control over the histogram bin spacing will
remove these difficulties. We also hope to use future data sets to determine an accurate statistical model for the
error/noise in a given data set, and how that model changes as the histogram bins are selected in different ways.
As the ultimate goal of any model of the immune response is the comparison of changing intra- and extracellular
conditions on proliferative behavior [30, 32], uncertainty quantification in the form of confidence intervals are
necessary to facilitate such a comparison. Asymptotic theory for sum-of-squares-based estimators and model
comparison tests [7, 8, 20, 58] exist, but rely upon a correct underlying statistical model assumption for the data.
While we assume a constant variance model here (28), it has been shown that this is not correct [13], and thus any
confidence intervals computed from such a formulation would be in error. (This is not to say that the estimated
parameters reported here are invalid, but only that we cannot continue further to quantify the certainty of those
estimates without additional information.) Determination of an accurate statistical model is of vital importance
for the unbiased estimation of standard errors and confidence intervals for the estimated model parameters [14].

Similarly, the mechanism responsible for the apparently spurious measurement at t = 72 hours must be
properly accounted for in future work. As has been shown, the total mass of CFSE in the cell culture is measured
to increase from t = 48 hours to t = 72 hours in [13]. The inability of the current model to describe this behavior is
not directly a shortcoming of the model itself (as any method, e.g., deconvolution with a series of gaussian curves,
would suffer from a similarly biased result) but rather represents an incomplete understanding of the nature of
the observation process. Indeed, it is an asset of the current model, derived from conservation principles, that
such a feature has been noticed. Thus, in addition to the statistical model discussed in the previous paragraph,
future work will need to focus on establishing an observation model to accurately account for the manner in which
the cell population data is represented.

In support of the results of [13], parameterization of the proliferation and death rates α and β in terms of the
translated or moving variable s provides an improvement to the OLS fit of the model to the data. Beyond this
minor improvement, the introduction of this variable was motivated by the fact that, when all data is placed in
the coordinate s (Figure 12), the peaks corresponding to distinct division numbers align much more closely than
when presented in terms of the measurement variable z (Figure 1). As such, the estimation of the proliferation
and death rate functions in terms of this variable should more directly relate division number to the rate at which
cells in a given generation divide. It follows that average rates of proliferation can be calculated in terms of the
number of divisions a cell has undergone, and the dependence of these rates on time can also be explored (Table
13). Thus, we find that the translated coordinate s, as a result of its strong correlation with division number,
permits the estimated functions α and β to be easily related to intuitive measures of a lymphocyte response such
as mean division time, mean doubling time, etc. Such information provides a nearly complete quantitative picture
of a dynamic T cell responsiveness and thereby may be helpful for mechanistic studies of immune control.

The mathematical model presented here is more complex than many of the existing frameworks for under-
standing cell turnover kinetics. While the number of parameters will vary depending upon the manner in which
nodes for the estimation of the proliferation and death rate functions α and β are chosen, the best-fit results
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Figure 13: Average proliferation rate as a function of time for each generation of cells.
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presented in this report require 73 parameters. Optimization times range from 1 to 8 hours, depending upon the
accuracy of the initial iterate and the tolerances selected for the optimization routine. In spite of this additional
complexity, the current model accurately predicts CFSE-based proliferation dynamics and does so by directly
addressing histogram data from the assay. By avoiding the need for any deconvolution techniques to extract
cell numbers (per generation) from the histograms, some potential bias and/or error is avoided. Additionally,
by directly addressing quantities such as autofluorescence and the natural decay of label, their effects on the
observed behavior of the population can be quantified. For instance, we might generalize the model presented
here to account for AutoFI which changes as a function of time (as cells are activated and/or enter a quiescent
state) or which varies from cell to cell in the population. While the exact shape of the estimated proliferation
and death rate functions may change with various choices of nodes (Figure 7), we have seen that, for reasonable
parameterization, the average proliferation rates (as a function of division number) are consistently estimated
(Table 4). When estimating the time-dependent proliferation rate, it should be noted that, for high division
number, the rate estimated for early times must be interpreted with caution: the rate is ultimately meaningless
until cells have emerged in the population which divide at that rate. One potential solution to this caveat is to
use a more complex (e.g. non-rectangular) grid for the estimation of α(t, s).

In the current model formulation, the rates of proliferation and/or death are essentially exponential (in the
sense that the rate of change of the population, ∂n

∂t
is directly proportional to the total population n(t, y)) with

rates α and β, respectively. We do not need to make use of delays or minimum cell cycle times in order to fit
the data (as the time-dependence of the function α accomplishes the same effect). An interesting generalization
of the current model would be the incorporation of volume structure. As cells would need to progress from
size V to 2V before division, this would naturally require the incorporation of some cell cycle time. Moreover,
forward scatter (FSC) of laser light may possibly be used as an observable surrogate for cell size. Importantly,
the current model assumes that all cells in the population behave in exactly the same manner. However, recent
work has demonstrated that there are cohorts of closely related cells whose behavior is correlated in some way
[25, 35, 64, 67]. Thus it may be necessary to examine in the framework of [4, 5, 9] the effects of probabilistically
distributed parameters within the population. This same framework could be used to describe subpopulations of
cells with varying levels of AutoFI (as discussed in the previous paragraph) or which internally process/catabolize
intracellular die at different rates.

Using the data set from [13, 47], we have shown that the incorporation of autofluorescence and Gompertz
decay of label provide a mathematical model with firm physiological underpinnings which can accurately describe
CFSE histogram data directly. Because of the nonparametric manner in which the proliferation and death rates
are estimated, this model is able to encapsulate a wide variety of proliferative responses as various types of cells
are subjected to a variety of experimental conditions and then measured. We are actively working to collect
additional data sets with which to demonstrate the widespread applicability of this model, as well as to use this
model in a systematic fashion to analyze how the estimated parameters vary under changing experimental and
biological conditions. As more information becomes available regarding the complex processes involved in cell
proliferation, we are confident that the model discussed here provides a firm physiological foundation upon which
CFSE-based assay data can be understood. We strongly believe that the ideas and results presented here will
form an important interpretive framework with a wide array of applications in experimental settings, diagnostic
tests [28], and perhaps in a more integrated model of cell dynamics [39, 44]. The authors are also grateful to
referees for constructive comments and suggestions for improvements in this manuscript.
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